lunes, 29 de abril de 2013

MATEMATICAS 2



ÀNGULOS, TRIÁNGULOS Y RELACIONES MÉTRICAS
Un ángulo es la parte del plano comprendida entre dos semirrectas que tienen el mismo punto de origen o vértice.1 Suelen medirse en unidades tales como el radián, el grado sexagesimal o el grado centesimal.
Pueden estar definidos sobre superficies planas (trigonometría plana) o curvas (trigonometría esférica). Se denomina ángulo diedro al espacio comprendido entre dos semiplanos cuyo origen común es una recta. Un ángulo sólido es el que abarca un objeto visto desde un punto dado, midiendo su tamaño aparente.

Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados, es decir: no colineales). Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.
Por lo tanto, un triángulo tiene 3 ángulos interiores, 3 ángulos exteriores, 3 lados y 3 vértices.
Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se llama triángulo geodésico.

Las relaciones métricas en el triángulo son aquellas tratan las relaciones entre longitudes o ángulos, entre las cuales se destaca el Teorema de Pitágoras que es válido exclusivamente en el triángulo rectángulo y se aplica sobre las dimensiones de los catetos, hipotenusa, la altura relativa a la hipotenusa y los segmentos determinados sobre ésta como proyecciones de los catetos de triángulo. 

Clasificación de ángulos según su medida


Agudo < 90° Recto = 90° Obtuso>90°
ángulo agudo ángulo recto ángulo obtuso
Convexo < 180° Llano = 180° Cóncavo > 180°
ángulo obtuso ángulo llano ángulo cóncavo
Nulo = 0º Completo = 360°  
ángulo nulo ángulo Completo  
Negativo < 0º Mayor de 360°  
ángulo negativo ángulo mayor de 360º  

Tipos de ángulos según su posición

Ángulos consecutivos

Ángulos consecutivos
Ángulos consecutivos son aquellos que tienen el vértice y un lado común.

Ángulos adyacentes

Ángulos adyacentes
Ángulos adyacentes son aquellos que tienen el vértice y un lado común, y los otros lados situados uno en polongación del otro.
Forman un ángulo llano.

Ángulos opuestos por el vértice

Ángulos opuestos por el vértice
Son los que teniendo el vértice común, los lados de uno son prolongación de los lados del otro.
Los ángulos 1 y 3 son iguales.
Los ángulos 2 y 4 son iguales.

Clases de ángulos según su suma

Ángulos complementarios

Ángulos complementarios
Dos ángulos son complementarios si suman 90°.

Ángulos suplementarios

Ángulos suplementarios
Dos ángulos son suplementarios si suman 180°.

Ángulos entre paralelas y una recta transversal

Ángulos correspondientes

Ángulos correspondientes

Los ángulos 1 y 2 son iguales.

Ángulos alternos internos

Ángulos alternos internos

Los ángulos 2 y 3 son iguales.

Ángulos alternos externos

Ángulos alternos externos

Los ángulos 1 y 4 son iguales.

Ángulos complementarios o suplementarios
Dos ángulos son complementarios si la suma de sus ángulos es igual a 90o.
Si conocemos un ángulo, su ángulo complementario se puede encontrar restando la medida del mismo a 90o.

Ejemplo: ¿Cuál es el ángulo complementario de 43o?
Solución: 90o  -  43o  =  47o

Dos ángulos son suplementarios si la suma de sus grados es igual a 180o.
Si conocemos un ángulo, su ángulo suplementario se puede averiguar restando la medida del mismo a 180o.

Ejemplo: ¿Cuál es el ángulo suplementario de 143o?
Solución: 180o  -  143o  =  37o
TRIANGULOS


Clasificación de triángulos

Según sus lados

Triángulo equilátero

Triángulo equilátero Tres lados iguales.

Triángulo isósceles

Triángulo isósceles Dos lados iguales.

Triángulo escaleno

Triángulo escaleno Tres lados desiguales


Según sus ángulos

Triángulo acutángulo

Triángulo acutángulo Tres ángulos agudos

Triángulo rectángulo

Triángulo rectángulo Un ángulo recto El lado mayor es la hipotenusa. Los lados menores son los catetos.

Triángulo obtusángulo

Triángulo obtusángulo Un ángulo obtuso.



 Segun sus angulos

  • Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa.
  • Triángulo oblicuángulo: cuando ninguno de sus ángulos interiores son rectos (90°). Por ello, los triángulos obtusángulos y acutángulos son oblicuángulos.
  • Triángulo obtusángulo: si uno de sus ángulos interiores es obtuso (mayor de 90°); los otros dos son agudos (menores de 90°).
  • Triángulo acutángulo: cuando sus tres ángulos interiores son menores de 90°. El triángulo equilátero es un caso particular de triángulo acutángulo.
Triángulo Rectángulo Triángulo Obtusángulo Triángulo Acutángulo
Rectángulo Obtusángulo Acutángulo

\underbrace{\qquad \qquad \qquad \qquad \qquad \qquad}_{}

Oblicuángulos                            


CONGRUENCIA DE TRIANGULOS

Las condiciones mínimas que deben cumplir dos triángulos para que sean congruentes se denominan criterios de congruencia, los cuales son:
  • Criterio LLL: Si en dos triángulos los tres lados de uno son respectivamente congruentes con los del otro, entonces los triángulos son congruentes.
  • Criterio LAL: Dos lados y un ángulo compredido entre ellos.
  • Criterio ALA: Si dos ángulos y el lado entre ellos son respectivamente congruentes con los mismos de otro triángulo, entonces los triángulos son congruentes.
  • Criterio LLA: Dos triángulos son congruentes si tienen respectivamente iguales dos lados y el ángulo opuesto al mayor de ellos.
Postulado LAL
LAL significa lado-ángulo-lado.
Dos triángulos son congruentes si tienen dos lados y el ángulo determinado por ellos respectivamente iguales.
triangulos_congruencia_018
congruencia_triangulos_006
triangulos_congruencia_022

Postulado ALA
ALA significa ángulo-lado-ángulo.
Dos triángulos son congruentes si tienen dos ángulos y el lado común a ellos, respectivamente, iguales.
triangulos_congruencia_024
congruencia_triangulos_007
triangulos_congruencia_028

Postulado LLA

LLA significa lado-lado-ángulo
Dos triángulos son congruentes si tienen respectivamente iguales dos lados y el ángulo opuesto al mayor de ellos.
triangulos_congruencia_030
congruencia_triangulos_008
triangulos_congruencia_034

Postulado LLL

LLL significa lado-lado-lado.
Dos triángulos son congruentes si tienen sus tres lados respectivamente iguales.
triangulos_congruencia_040
congruencia_triangulos_009
triangulos_congruencia_036


 PROBLEMAS DE SEMEJANZA DE TRIANGULOS

 




1Dos triángulos son semejantes si tienen dos ángulos iguales.

dubujodubujo

iGUALDADES

2 Dos triángulos son semejantes si tienen los lados proporcionales.

triángulotriángulo

razones

3 Dos triángulos son semejantes si tienen dos lados proporcionales y el ángulo comprendido entre ellos igual.

dibujodibujo

razones

Semejanza de triángulos rectángulos

1Dos triángulos rectángulos son semejantes si tienen un ángulo agudo igual.
dibujodibujo
C

2Dos triángulos rectángulos son semejantes si tienen los dos catetos proporcionales.
dibujodibujo
C

3Dos triángulos rectángulos son semejantes si tienen proporcionales la hipotenusa y un cateto.
dibujodibujo
C

Ejemplos prácticos

1. Determinar la altura de un edificio que proyecta una sombra de 6.5 m a la misma hora que un poste de 4.5 m de altura da una sombra de 0.90 m.
dibujo
solución

2.Los catetos de un triángulo rectángulo que miden 24 m y 10 m. ¿Cuánto medirán los catetos de un triángulo semejante al primero cuya hipotenusa mide 52 m?
dibujo
solución
solución
solución











 

 TEOREMA DE TALES

Cuando en geometría hablemos del Teorema de Tales (o Thales), debemos aclarar a cuál nos referimos ya que existen dos teoremas atribuidos al matemático griego Tales de Mileto en el siglo VI a. C.
El primero de ellos se refiere a la construcción de un triángulo que sea semejante a otro existente (triángulos semejantes son los que tienen iguales ángulos).
Mientras que el segundo desentraña una propiedad esencial de los circuncentros de todos los triángulos rectángulos (los circuncentros se encuentran en el punto medio de su hipotenusa).

Primer teorema

Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre si. El primer teorema de Tales recoge uno de los postulados más básicos de la geometría, a saber, que:
Si en un triángulo se traza una línea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes.
Entonces, veamos el primer Teorema de Tales en un triángulo:
x Dado un triángulo ABC, si se traza un segmento paralelo, B'C', a uno de los lados del triángulo, se obtiene otro triángulo AB'C', cuyos lados son proporcionales a los del triángulo ABC.
Lo que se traduce en la fórmula
 
tales001
 

Ver: PSU: Geometría;
Hagamos un ejercicio como ejemplo:

En el triágulo de la derecha, hallar las medidas de los segmentos a y b.
Apicamos la fórmula, y tenemos
tales002

x

Como vemos, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos, a raíz de la cual se obtiene el siguiente corolario.
Corolario
Al establecer la existencia de una relación de semejanza entre ambos triángulos se deduce la necesaria proporcionalidad entre sus lados. Ello significa que la razón entre la longitud de dos de ellos en un triángulo se mantiene constante en el otro.
tales003
Una aplicación del Teorema de Tales.
Por ejemplo, en la figura de la izquierda se observan dos triángulos que, en virtud del Teorema de Tales, son semejantes. Entonces, como corolario, el cociente entre los lados A y B del triángulo pequeño es el mismo que el cociente entre los lados D y C en el triángulo grande.
En virtud del teorema de Tales, ambos triángulos son semejantes y se cumple que:

tales003
Este corolario es la base de la geometría descriptiva. Su utilidad es evidente; según Heródoto, el propio Tales empleó el corolario de su teorema para medir la altura de la  pirámide de Keops en Egipto.
La leyenda de Tales y las pirámides
Según la leyenda (relatada por Plutarco), Tales de Mileto en un viaje a Egipto, visitó las pirámides de Guiza (Keops, Kefrén y Micerinos), construidas varios siglos antes.
Admirado ante tan portentosos monumentos, quiso saber su altura.
La leyenda dice que solucionó el problema aprovechando la semejanza de triángulos (y bajo la suposición de que los rayos solares incidentes eran paralelos).
tales004
Así, estableció una relación de semejanza (Primer teorema de Tales) entre dos triángulos rectángulos, los que se grafican en la figura a la derecha.
Por un lado el que tiene por catetos (C y D) a la longitud de la sombra de la pirámide (C, conocible) y la longitud de su altura (D, desconocida), y por otro lado, valiéndose de una vara (clavada en el suelo de modo perfectamente vertical) otro cuyos catetos conocibles (A y B) son, la longitud de la vara (A) y la longitud de su sombra (B). Como en triángulos semejantes, se cumple que tales003, por lo tanto la altura de la pirámide es tales004, con lo cual resolvió el problema.
Otra variante del Teorema de Tales
x Del primer teorema de Tales se deduce además lo siguiente (realmente es otra variante de dicho teorema, y, a su vez, consecuencia del mismo):
Si dos rectas cualesquieras (r y s) se cortan por varias rectas paralelas (AA’, BB’, CC’) los segmentos determinados en una de las rectas (AB, BC) son proporcionales a los segmentos correspondientes en la otra (A’B’, B’C’).

tales005


Ejercicios
1. Las rectas a, b y c son paralelas. Hallar la longitud de x.

x

tales006
2.Las rectas a, b son paralelas. ¿Podemos afirmar que c es paralela a las rectas a y b?

x
, porque se cumple el teorema de Thales.

tales007
Una aplicación inmediata de este teorema sería la división de un segmento en partes iguales, o en partes proporcionales a números dados

Aplicación del Primer Teorema de Tales

Una aplicación del teorema de Tales se utiliza para dividir un segmento en varias partes iguales (con ayuda de compás, regla y escuadra o cartabón).
Ejemplo
Dividir el segmento AB en 3 partes iguales
x 1. Se dibuja una semirrecta de origen el extremo A del segmento.
x 2. Tomando como unidad cualquier medida, se señalan en la semirrecta 3 unidades de medida a partir de A.
x 3. Por cada una de las divisiones de la semirrecta se trazan rectas paralelas al segmento que une B con la última división sobre la semirrecta. Los puntos obtenidos en el segmento AB determinan las 3 partes iguales en que se divide.

Segundo teorema

El segundo teorema de Tales de Mileto es un teorema de geometría particularmente enfocado a los triángulos rectángulos, las circunferencias y los ángulos inscritos, consiste en el siguiente enunciado:
Sea B un punto de la circunferencia de diámetro AC, distinto de A y de C. Entonces el ángulo ABC, es recto.
Este teorema (véase figuras  1 y 2), es un caso particular de una propiedad de los puntos cocíclicos y de la aplicación de los ángulos inscritos dentro de una circunferencia.
tales005 x
Figura 1.
Ilustración del enunciado del segundo teorema de Tales de Mileto.
Figura 2.
Siempre que AC sea un diámetro, el ángulo B será constante y recto.

Demostración:
En la circunferencia de centro O y radio r (véase figura 3), los segmentos
tales008
son iguales por ser todos radios de la misma circunferencia.
Por lo tanto, los triángulos AOB y BOC son isósceles.
La suma de los ángulos del triángulo ABC es:
2α + 2β = π (radianes) (180º)
Dividiendo ambos miembros de la ecuación anterior por dos, se obtiene:
tales009
Con la expresión anterior el segundo teorema queda demostrado.
tales006
Figura 3.
Los triángulos AOB y BOC son isósceles.

Semicircunferencia

Como la condición para este enunciado es que la hipotenusa corresponda al diámetro de una circunferencia, también se puede expresar como que el triángulo está inscrito en una semicircunferencia.
Entonces, el Teorema de Tales dirá que "todo triángulo inscrito en una semicircunferencia es rectángulo con hipotenusa igual al diámetro".
triangulo_circunf_001
Demostración
Sea el triángulo BCA (en la figura superior)
Como OA y OB son iguales (radios de la semicircunferencia) , los ángulos ABO y BOA también son iguales y como OA y OC también son iguales, los ángulos OAC y OCA son iguales. Por tanto, ángulo BAC es igual a la suma de ABC y ACB.
Teniendo en cuenta que la suma de los tres ángulos interiores de un triángulo es 180º, el ángulo BAC debe ser recto.
Ver: PSU Geometría: Pregunta 08_2006
Corolarios
Corolario 1
 “En todo triángulo rectángulo la longitud de la mediana correspondiente a la hipotenusa es siempre la mitad de la hipotenusa.

Ya que aplicando el teorema anterior, se sabe que para cualquier posición que adopte el vértice B vale la igualdad, OA = OB = OC = r, donde OB es la mediana de la hipotenusa, (véase figura 3).


Corolario 2
La circunferencia circunscripta a todo triángulo rectángulo siempre tiene radio igual a la mitad  de la hipotenusa y su circuncentro se ubicará en el punto medio de la misma.

El corolario 2 también surge de aplicar el teorema anterior, para una comprensión intuitiva basta observar la figura 2.
Aplicación del Segundo Teorema de Tales
tales007
Construcción de tangentes (líneas rojas en la figura a la derecha) a una circunferencia k desde un punto P, utilizando el segundo teorema de Tales.
Este segundo teorema (de Tales de Mileto) puede ser aplicado para trazar las tangentes a una circunferencia k dada, que además pasen por un punto P conocido y externo a la misma (véase figura ).
Se supondrá que una tangente cualquiera t (por ahora desconocida) toca a la circunferencia k en un punto T (también desconocido por ahora).
Se sabe por simetría que cualquier radio r de la circunferencia k es perpendicular a la tangente del punto T que dicho radio define en la misma, por lo que concluimos que ángulo OTP es necesariamente recto.
Lo anterior implica que el triángulo OTP es rectángulo.
Recordando el corolario 2 del segundo teorema de Tales podemos deducir que entonces el triángulo OTP es inscribible en una circunferencia de radio mitad de la hipotenusa OP del mismo.
Entonces, marcando el punto H como punto medio de la hipotenusa OP y haciendo centro en el mismo, podemos dibujar una segunda circunferencia auxiliar (gris en la figura) que será la que circunscribe al triángulo OTP.
Esta última circunferencia trazada interceptará a la circunferencia k en dos puntos T y T', estos son justamente los puntos de tangencia de las dos rectas que son simultáneamente tangentes a k y además pasan por el punto P, ahora ya conocidos los puntos T y T' solo basta trazar las rectas TP y T'P (rojas en la figura) para tener resuelto el problema.

 i dos rectas cualesquieras se cortan por varias rectas paralelas, los segmentos determinados en una de las rectas son proporcionales a los segmentos correspondientes en la otra.
Teorema de Thales


razones

Ejercicios

1.Las rectas a, b y c son paralelas. Halla la longitud de x.
Teorema de Thales
Teorema de Thales

2.Las rectas a, b son paralelas. ¿Podemos afirmar que c es paralela a las rectas a y b?
Teorema de Thales
, porque se cumple el teorema de Thales.

Teorema de Thales

El teorema de Thales en un triángulo

Dado un triángulo ABC, si se traza un segmento paralelo, B'C', a uno de los lados del triangulo, se obtiene otro triángulo AB'C', cuyos lados son proporcionales a los del triángulo ABC.
dibujo

razones


Hallar las medidas de los segmentos a y b.
dibujo
razones
razones

Aplicaciones del teorema de Thales

El teorema de Thales se utiliza para dividir un segmento en varias partes iguales.

Ejemplo

Dividir el segmento AB en 3 partes iguales
Rectas
1. Se dibuja una semirrecta de origen el extremo A del segmento.
Rectas
2. Tomando como unidad cualquier medida, se señalan en la semirrecta 3 unidades de medida a partir de A.
Rectas
3. Por cada una de las divisiones de la semirrecta se trazan rectas paralelas al segmento que une B con la última división sobre la semirrecta. Los puntos obtenidos en el segmento AB determinan las 3 partes iguales en que se divide.


 TEOREMA DE PITAGORAS

El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa ("el lado de mayor longitud del triángulo rectángulo") es igual a la suma de los cuadrados de los catetos (los dos lados menores del triángulo, los que conforman el ángulo recto).
Teorema de Pitágoras
En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

Pitágoras de Samos
cuando se va a hallar la hipotenusa se Suma. ejemplo: h^2= a^2 + b^2
cuando se va a hallar un cateto se Resta. ejemplo: c^2= a^2 - h^2
De la ecuación (1) se deducen fácilmente 3 corolarios de aplicación práctica:

1 La hipotenusa de un triángulo rectángulo mide 405.6 m y la proyección de un cateto sobre ella 60 m. Calcular:
1 Los catetos.
2 La altura relativa a la hipotenusa.
3 El área del triángulo.
2 Calcular los lados de un triángulo rectángulo sabiendo que la proyección de uno de los catetos sobre la hipotenusa es 6 cm y la altura relativa de la misma raízcm.
3 Una escalera de 10 m de longitud está apoyada sobre la pared. El pie de la escalera dista 6 m de la pared. ¿Qué altura alcanza la escalera sobre la pared?
4 Determinar el lado de un triángulo equilátero cuyo perímetro es igual al de un cuadrado de 12 cm de lado. ¿Serán iguales sus áreas?
5Calcular el área de un triángulo equilátero inscrito en una circunferencia de radio 6 cm.
6 Determinar el área del cuadrado inscrito en una circunferencia de longitud 18.84 cm.
7 En un cuadrado de 2 m de lado se inscribe un círculo y en este círculo un cuadrado y en este otro círculo. Hallar el área comprendida entre el último cuadrado y el último círculo.
8 El perímetro de un trapecio isósceles es de 110 m, las bases miden 40 y 30 m respectivamente. Calcular los lados no paralelos y el área.
9 A un hexágono regular 4 cm de lado se le inscribe una circunferencia y se le circunscribe otra. Hallar el área de la corona circular así formada.
10 En una circunferencia una cuerda mide 48 cm y dista 7 cm del centro. Calcular el área del círculo.
11 Los catetos de un triángulo inscrito en una circunferencia miden 22.2 cm y 29.6 cm respectivamente. Calcular la longitud de la circunferencia y el área del círculo.
12Sobre un círculo de 4 cm de radio se traza un ángulo central de 60°. Hallar el área del segmento circular comprendido entre la cuerda que une los extremos de los dos radios y su arco correspondiente.
Calcular los lados de un triángulo rectángulo sabiendo que la proyección de uno de los catetos sobre la hipotenusa es 6 cm y la altura relativa de la misma raízcm.
dibujo ·

solución
solución
solución
Una escalera de 10 m de longitud está apoyada sobre la pared. El pie de la escalera dista 6 m de la pared. ¿Qué altura alcanza la escalera sobre la pared?
dibujo


solución

Determinar el lado de un triángulo equilátero cuyo perímetro es igual al de un cuadrado de 12 cm de lado. ¿Serán iguales sus áreas?
Pcuadrado = 12 · 4 = 48 cm
Ptriángulo = 48 cml = 48 : 3 = 16 cm
dibujo


A = 122 = 144 m²
dibujo

solución
solución
solución
solución


Calcular el área de un triángulo equilátero inscrito en una circunferencia de radio 6 cm.
El centro de la circunferencia es el baricentro. Por tanto:
operaciones
dibujo
operaciones
operaciones
operaciones 

 

PROPIEDADES DE LOS POLIGONOS

Polígono

Polígonos.
En geometría, un polígono es una figura plana compuesta por una secuencia finita de segmentos rectos consecutivos que cierran una región en el espacio. Estos segmentos son llamados lados, y los puntos en que se intersectan se llaman vértices. El interior del polígono es llamado a veces su cuerpo. El polígono es el caso bidimensional del politopo, figura geométrica general definida para cualquier número de dimensiones. A su vez, un politopo de tres dimensiones se denomina poliedro, y de cuatro dimensiones se llama polícoro.
La palabra polígono deriva del griego antiguo πολύγωνος (polúgonos), a su vez formado por πολύ (polú) ‘muchos’ y γωνία (gōnía) ‘ángulo’.1 2 3 Aunque hoy en día los polígonos son usualmente entendidos por el número de sus lados.
La noción geométrica elemental ha sido adaptada de distintas maneras para servir a propósitos específicos. Los matemáticos a menudo les interesa solo la línea poligonal cerrada y los polígonos simples, los cuales no se intersecan por sí mismos, y pueden definir un polígono de acuerdo a ello. Es requisito geométrico que dos lados que se intersecan en un vértice formen un ángulo no llano (distinto a 180º), ya que de otra manera los segmentos se considerarían partes de un lado único, sin embargo, matemáticamente, esos vértices podrían permitirse algunas veces. En el ámbito de la computación, la definición de polígono ha sido ligeramente alterada debido a la manera en que las figuras son almacenadas y manipuladas en la computación gráfica para la generación de imágenes.


Ángulo central de un polígono regular

Es el formado por dos radios consecutivos.
Si n es el número de lados de un polígono:
Ángulo central de un polígono regular
Ángulo central = 360° : n
Ángulo central del pentágono regular= 360° : 5 = 72º

Ángulo central de una circunferencia


dibujo
El ángulo central tiene su vértice en el centro de la circunferencia y sus lados son dos radios.
La medida de un arco es la de su ángulo central correspondiente.
expresión


ANGULO INTERIOR DE UN POLIGONO
En geometría, un ángulo interior o ángulo interno es un ángulo formado por dos lados de un polígono que compartiendo un extremo común, está contenido dentro del polígono. Un polígono simple tiene sólo un ángulo interno por cada vértice y está situado del lado opuesto del polígono.
Si todos los ángulos interiores de un polígono no superan los 180 grados sexagesimales o \pi radianes, se clasifican como polígonos convexos. Si existe por lo menos un ángulo superior a 180 grados o \pi radianes, se trata de un polígono cóncavo.
Si todos los ángulos interiores de un polígono convexo son iguales y todos sus lados tienen la misma longitud, se trata de un polígono regular. En caso contrario, se trata de un polígono irregular.


 

 

PERIMETRO Y AREA DE POLIGONO REGULARES

 

                           






























































No hay comentarios:

Publicar un comentario